Difference between revisions of "Conference 2013"

From Evo Devo Universe
Jump to: navigation, search
Line 4: Line 4:
 
<h1 style="font-size:200%">'''Evolution and Development of the Universe'''</h1></center>
 
<h1 style="font-size:200%">'''Evolution and Development of the Universe'''</h1></center>
 
<BR>
 
<BR>
=== The Physics of Learning Curves: Nature, Limits, and Reliability ===
+
=== The Physics of Performance Curves: Nature, Limits, and Reliability ===
  
 
Location: East Coast, USA. (TBD).<BR>
 
Location: East Coast, USA. (TBD).<BR>

Revision as of 22:35, 11 January 2013

EDUGraphicBig.jpg


Second International Conference on the

Evolution and Development of the Universe


The Physics of Performance Curves: Nature, Limits, and Reliability

Location: East Coast, USA. (TBD).

Technology performance curves, also known in engineering, economics, and manufacturing as progress or production functions, and in cognitive science as learning curves or experience curves, involve the growth of technological capability or efficiency by exponential, power law, logistic, or other fashion with cumulative experience or production. These curves have been studied by a small group of scholars since the 1930's from physical, engineering, planning, manufacturing, management, policy, computational, psychological, philosophical, and other perspectives. Given their accelerating impact on the technology environment, they seem a particularly useful topic of technology innovation, strategy, economics, and policy. Yet in spite of their increasing importance, we do not presently have broadly accepted theory or understanding of the physical basis, limits, and reliability of long-term forecasts of these curves, and many open questions remain. Fortunately, performance curve scholarship is on the rise, and opportunities for high-impact collaboration and publication in this area have never been better.

Topics of Investigation:

  • What models do we have for the physical basis of technology, complexity, and psychology performance curves?
  • Can we develop unifying theories for any classes (physical, efficiency, computational, informational, psychological) of performance curves today?
  • What explains the long-term smoothness and predictability we find in some technology performance curves in our Performance Curve Databases?
  • The most rapidly accelerating performance appears to occur in a select subset of technologies (e.g., nanotechnologies, computing, and communications technologies) where the greatest rates of miniaturization and virtualization are occurring. What are the business, policy, and social implications of this observation? How may it be validated or falsified?
  • Densification of nodes and edges of many technological, social, and information networks is also occurring over time, following a power law (Leskovec 2005). As one example, dense metropoli have been outcompeting less dense cities and rural areas, particularly since the advent of electronic networks, by delivering greater rates of innovation and life services efficiency per dollar, per capita (Bettencourt et.al. 2007). When and why can we expect densification to occur, and how do we model its contribution to performance curves?
  • When are miniaturization (scale reduction) processes persistently exponential in performance improvement, and which physical processes are candidates for continued miniaturization?
  • How and when does efficiency (dematerialization) in physical processes cause, sustain, or relate to performance improvement?
  • How and when does virtualization and modeling intelligence (simulation, automation, machine learning) in physical processes cause, sustain, or relate to performance improvement?
  • What neural adaptations create power law, exponential, and logistic reductions in time to perform cognitive tasks? Can these adaptations be modeled as densification, efficiency, virtualization, or miniaturization processes?
  • How are cognitive performance curves in individual learning related to organizational and industrial performance curves?
  • When are smoothness and predictability in performance curves due to physical law, averaging, scale, collective learning, economic or psychological expectations, or other physical processes?
  • Why are technology product outliers so often market failures? Can such data improve R&D timing, strategy, and policy? How are outliers typically distributed (normal, log-normal, etc.) vs. the curve?
  • For exponential curves, learning is based on a fixed percentage of what remains to be learnt. For power laws, learning slows down with experience. When is each valid?
  • Standard deviation and skew in performance times often show power law decreases with cumulative experience. Why and when does this occur?
  • Can we reliably differentiate non-persistently exponential performance curves (market-limited, etc.) from persistently exponential (scale reduction, FERD, etc.) curves?
  • How do non-computational (physical process, efficiency) performance curves differ from computational (computing, memory, communication) performance curves?
  • How do computer hardware and software performance curves differ, and why does hardware exhibit consistently better long-term exponential performance improvement?
  • When does technology substitution (creating a composite technology performance curve) occur in any technology platform? Under what circumstances can we predict it?
  • When does exponential performance end in any performance curve? Under what circumstances can we predict it?
  • What processes typically cause state switches (transitions to steeper or flatter exponential modes) in technology performance curves?
  • What physical processes differentiate superexponential, exponential, logistic, life cycle, and other performance curves?
  • What do exponential and superexponential performance and efficiency curves imply for the future of technological innovation and sustainability?


We are seeking physicists, systems and process engineers, functional performance capability planners, management and learning theorists, neuroscientists, cognitive scientists, technology substitution scholars, miniaturization, densification, dematerialization, virtualization, simulation and automation scholars, computer scientists, economists, complexity theorists, technological evolution and development scholars and their critics. Scholars who approach performance curve study from materials science, thermodynamic, computational, informational, evolutionary, developmental, economic, competitive, cognitive science, social science, systems theoretic and other perspectives are welcomed. We will seek to compare and critique a variety of performance curves data sets and models, and consider first-order implications of these models for technology innovation, strategy, sustainability, economics, and policy, underscoring the great technical, political, economic, and social value of better scholarship and science in this area.

Conference 2013 Steering Committee (incomplete)

  • Tessaleno C. Devezas, physicist, materials scientist, and scholar of global technoeconomic development. (Covilhã, Portugal)
  • Georgi Georgiev, physicist working on understanding the mechanisms for the measured exponential growth in complexity through time.
  • John M. Smart, systems theorist studying accelerating change and evolutionary development.
  • Clement Vidal, philosopher and systems theorist studying evolutionary cosmology.

If you have an interest in working on the Conference 2012 steering or scientific committees, or in sponsoring or providing other assistance, please contact Georgi Georgiev, Clément Vidal or John Smart.

Select Bibliography