Conference 2013

From Evo Devo Universe
Revision as of 21:07, 11 January 2011 by JohnMSmart (talk | contribs) (The Physics of Performance Curves: Nature, Limits, and Reliability)
Jump to: navigation, search

Workshop on the

Evolution and Development of the Universe

Workshop 2011:

The Physics of Performance Curves: Nature, Limits, and Reliability

Location: East Coast, US. (TBD).

Technology performance curves, also known in engineering, economics, and manufacturing as progress or production functions, and in cognitive science as learning curves or experience curves, involve the growth of technological capacity or efficiency by exponential, power law, or other fashion with cumulative experience or production. These curves have been studied by a small group of scholars since the 1930's from physical, engineering, manufacturing, management, policy, computational, philosophical, and other perspectives. Given their accelerating impact on the technology environment, they are among the most important topics of technology innovation, strategy, economics, and policy. Yet in spite of their increasing importance, we do not presently have broadly accepted theory or understanding of the physical basis, limits, and reliability of long-term forecasts of these curves, and many open questions remain. Fortunately, performance curve scholarship is on the rise, and opportunities for high-impact collaboration and publication in this area have never been better.

Topics of Investigation:

  • What models do we have for the physical basis of technology and complexity performance curves?
  • Can we develop unifying theories for any classes (physical, efficiency, computational, informational) of performance curves today?
  • What explains the long-term smoothness and predictability we find in some technology performance curves in our Performance Curve Databases?
  • Why are performance curves in certain industries, such as computing, communications, and nanotechnology, significantly more predictable than in other industries?
  • When are smoothness and predictability due to physical law, averaging, scale, collective learning, economic or psychological expectations, or other physical processes?
  • Why are scale reduction processes persistently exponential in performance improvement, and which physical processes are candidates for continued scale reduction?
  • Why are virtualization (dematerialization, simulation) processes persistently exponential in performance improvement, and which physical domains are candidates for further virtualization?
  • To what degree are automation and machine learning virtualization processes? Efficiency processes? As they advance, how can we model their global exponential performance effects?
  • Why are technology product outliers so often market failures? Can such data improve R&D timing, strategy, and policy? How are outliers typically distributed (normal, log-normal, etc.) vs. the curve?
  • For exponential curves, learning is based on a fixed percentage of what remains to be learnt. For power laws, learning slows down with experience. When is each valid?
  • Standard deviation and skew in performance times often show power law decreases with cumulative experience. Why and when does this occur?
  • Can we reliably differentiate non-persistently exponential performance curves (market-limited, etc.) from persistently exponential (scale reduction, FERD, etc.) curves?
  • How do non-computational (physical process, efficiency) performance curves differ from computational (computing, memory, communication) performance curves?
  • How do computer hardware and software performance curves differ, and why does hardware exhibit consistently better long-term exponential performance improvement?
  • When does technology substitution (creating a composite technology performance curve) occur in any technology platform? Under what circumstances can we predict it?
  • When does exponential performance end in any performance curve? Under what circumstances can we predict it?
  • What processes typically cause state switches (transitions to steeper or flatter exponential modes) in technology performance curves?
  • What physical processes differentiate superexponential, exponential, logistic, life cycle, and other performance curves?
  • What do exponential and superexponential performance and efficiency curves imply for the future of technological innovation and sustainability?

We are seeking physicists, computer scientists, process engineers, technology performance curve scholars, technology substitution scholars, virtualization and scale reduction scholars, management and learning theorists, economists, complexity theorists, technological evolution and development scholars and their critics. Scholars who approach performance curve study from materials science, thermodynamic, computational, informational, evolutionary, developmental, economic, competitive, cognitive science, social science, systems theoretic and other perspectives are welcomed. We will seek to compare and critique a variety of performance curves data sets and models, and consider first-order implications of these models for technology innovation, strategy, sustainability, economics, and policy, underscoring the great technical, political, economic, and social value of better scholarship and science in this area.

Conference 2012 Scientific Committee

  • Tessaleno C. Devezas, physicist, materials scientist, and scholar of global technoeconomic development. (Covilhã, Portugal)
  • Georgi Georgiev, physicist working on understanding the mechanisms for the measured exponential growth in complexity through time.
  • John M. Smart, systems theorist studying accelerating change and evolutionary development
  • Clement Vidal, philosopher and systems theorist studying evolutionary cosmology.

If you have an interest in working on the Conference 2012 steering or scientific committees, or in sponsoring or providing other assistance, please contact Georgi Georgiev, Clément Vidal or John Smart.

Select Bibliography