Difference between revisions of "Research on SETI, black holes, XRB and star lifting"
Clementvidal (talk | contribs) (→Situation) |
Clementvidal (talk | contribs) |
||
Line 1: | Line 1: | ||
− | in construction.. | + | This page is in construction, and is meant to stimulate SETI research on black holes, X-Ray binaries (XRB) and star lifting. |
+ | It was initiated by Clément Vidal (2011). | ||
+ | |||
== Situation == | == Situation == | ||
− | The Search for Extra-Terrestrials (SETI) has | + | The Search for Extra-Terrestrials (SETI) has been unsuccessful so far. |
== Problems == | == Problems == | ||
+ | * '''Can we find evidence of control in the XRB's energy flow?''' | ||
+ | |||
+ | Energy flow regulation or control is a necessary condition for the growth, maintenance, evolution and reproduction of complex systems (see e.g. Aunger 2007; Chaisson 2011). Are some XRBs displaying such a feature? | ||
+ | |||
+ | * '''How can we distinguish a natural process from an artificial and unknown one?''' | ||
+ | |||
+ | Accretion is an ubiquitous astrophysical process in galaxy and planetary formation, so XRBs may simply always be natural. Let me however introduce an analogy. Fission can be found in natural forms, as well as fusion, which is one of the core energetic processes in stellar evolution. Yet, humans try to copy them, and would greatly benefit to -always- control them. So it is not because a process is known to be natural that its actual use is not driven by an intelligence.In fact, the situation may be even more subtle. The formation of XRBs might be natural, but controlled or taken over by ETIs, like a waterfall is a natural energy source humans can harness with damps. So, how can we develop criteria for natural versus artificial? Non-equilibrium thermodynamics, systems theory, artificial life, etc. because of their general concepts and applicability, will certainly provide key conceptual frameworks. Metrics like Freitas' ''sentience quotient'' or Chaisson's (2001, 2003) ''energy rate density'' are certainly very promising, and a KII-BΩ civilization should score high on them. Those metrics also indicate that the distinction natural versus artificial may be of a continuous nature. | ||
+ | |||
+ | * '''What is the origin, evolution, fate and possible migration of XRB?''' | ||
+ | |||
+ | With this question I mean that a compelling argument for the existence of advanced ETIs will most likely come from an evolutionary and global cosmic understanding of natural and possibly artificial stellar evolution in our and other galaxies. Yes indeed, humanity's SETI is just getting started. | ||
== Progressing on these issues == | == Progressing on these issues == | ||
Line 20: | Line 33: | ||
== Bibliography == | == Bibliography == | ||
+ | |||
+ | |||
+ | Aunger, Robert. 2007. “A rigorous periodization of ‘big’ history.” ''Technological Forecasting and Social Change'' 74 (8) (October): 1164-1178. doi:10.1016/j.techfore.2007.01.007. | ||
+ | Chaisson, E. J. 2001. ''Cosmic Evolution: The Rise of Complexity in Nature''. Harvard University Press. | ||
+ | |||
+ | ———. 2003. “A Unifying Concept for Astrobiology.” ''International Journal of Astrobiology'' 2 (02): 91-101. [http://www.tufts.edu/as/wright_center/eric/reprints/unifying_concept_astrobio.pdf http://www.tufts.edu/as/wright_center/eric/reprints/unifying_concept_astrobio.pdf] . | ||
+ | |||
+ | ———. 2011. “Energy rate density as a complexity metric and evolutionary driver.” ''Complexity'' 16 (3): 27-40. doi:10.1002/cplx.20323. [http://www.tufts.edu/as/wright_center/eric/reprints/EnergyRateDensity_I_FINAL_2011.pdf http://www.tufts.edu/as/wright_center/eric/reprints/EnergyRateDensity_I_FINAL_2011.pdf]. | ||
+ | |||
+ | Vidal, C. 2011 ''Black Holes: Attractors for Intelligence?'' Presented at the Kavli Royal Society International Centre, "Towards a scientific and societal agenda on extra-terrestrial life", 4-5 Oct 2010. |
Revision as of 14:05, 21 April 2011
This page is in construction, and is meant to stimulate SETI research on black holes, X-Ray binaries (XRB) and star lifting. It was initiated by Clément Vidal (2011).
Contents
Situation
The Search for Extra-Terrestrials (SETI) has been unsuccessful so far.
Problems
- Can we find evidence of control in the XRB's energy flow?
Energy flow regulation or control is a necessary condition for the growth, maintenance, evolution and reproduction of complex systems (see e.g. Aunger 2007; Chaisson 2011). Are some XRBs displaying such a feature?
- How can we distinguish a natural process from an artificial and unknown one?
Accretion is an ubiquitous astrophysical process in galaxy and planetary formation, so XRBs may simply always be natural. Let me however introduce an analogy. Fission can be found in natural forms, as well as fusion, which is one of the core energetic processes in stellar evolution. Yet, humans try to copy them, and would greatly benefit to -always- control them. So it is not because a process is known to be natural that its actual use is not driven by an intelligence.In fact, the situation may be even more subtle. The formation of XRBs might be natural, but controlled or taken over by ETIs, like a waterfall is a natural energy source humans can harness with damps. So, how can we develop criteria for natural versus artificial? Non-equilibrium thermodynamics, systems theory, artificial life, etc. because of their general concepts and applicability, will certainly provide key conceptual frameworks. Metrics like Freitas' sentience quotient or Chaisson's (2001, 2003) energy rate density are certainly very promising, and a KII-BΩ civilization should score high on them. Those metrics also indicate that the distinction natural versus artificial may be of a continuous nature.
- What is the origin, evolution, fate and possible migration of XRB?
With this question I mean that a compelling argument for the existence of advanced ETIs will most likely come from an evolutionary and global cosmic understanding of natural and possibly artificial stellar evolution in our and other galaxies. Yes indeed, humanity's SETI is just getting started.
Progressing on these issues
Benefits
People Interested
Tools
Bibliography
Aunger, Robert. 2007. “A rigorous periodization of ‘big’ history.” Technological Forecasting and Social Change 74 (8) (October): 1164-1178. doi:10.1016/j.techfore.2007.01.007. Chaisson, E. J. 2001. Cosmic Evolution: The Rise of Complexity in Nature. Harvard University Press.
———. 2003. “A Unifying Concept for Astrobiology.” International Journal of Astrobiology 2 (02): 91-101. http://www.tufts.edu/as/wright_center/eric/reprints/unifying_concept_astrobio.pdf .
———. 2011. “Energy rate density as a complexity metric and evolutionary driver.” Complexity 16 (3): 27-40. doi:10.1002/cplx.20323. http://www.tufts.edu/as/wright_center/eric/reprints/EnergyRateDensity_I_FINAL_2011.pdf.
Vidal, C. 2011 Black Holes: Attractors for Intelligence? Presented at the Kavli Royal Society International Centre, "Towards a scientific and societal agenda on extra-terrestrial life", 4-5 Oct 2010.